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1 The T2K experiment

The T2K experiment 1s a long baseline neutrino oscillation experiment in which a muon
neutrino or anti-neutrino beam 1s directed over a 295 km baseline from the J-PARC fa-
cility to the Super-Kamiokande (SK) detector.

The configuration allows neutrino oscillation to be studied in two channels: disappear-
ance of v, (v,,) and appearance of v, (V,).
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Figure 1: A schematic view of the T2K experiment.

The analysis includes 5 different types of events observed at SK: (1) CC1R,, (single
muon), (2) CC1R, (single electron) and (3) CC1R 17" (single electron single pion,
where pion 1s detected as a Michel electron) samples in FHC (neutrino) mode and (4)
CC1R), and (5) CC1 R, samples in RHC (anti-neutrino) mode.

2 Motivations of the new parameterization

The new parameterization regards sin 0 p and cos 0 p as two independent parameters:

e The oscillation probabilities are more sensitive to sin 0. p and cos ¢ p instead of 0 p

[1]:

<;>u — (;)e) = A, cosdcp + (—)B,esindcp + C/w(c;e)- (1)

P

e Around the neutrino energy 0.6 GeV, which 1s the oscillation maximum for the T2K

experiment, the contribution from cos 0 p term is much smaller than sin 0¢p term.
(Figure 2 left)

e The sin 0. p term contributes to the CP violation and determines the “’strength” (ex-
tension along the long axis of the ellipses, Figure 2 right) of the violation.

e The cos 0. p term contributes to the spectral distortion (width along the short axis of
the ellipses, Figure 2 right).
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Figure 2: Left: Coefficients of sin 0 p and cos o p in Eqn. (1) as a function of neutrino energy.
Right: Effects of sin - p and cos 6 p terms in P(v,, — ve) — P(v, — ve) bi-probability space
[3].

3 Modifications to the oscillation probabilities

Write sin 0 p and cos 0 p as X g and X for convenience.

e First introduce two polar coordinates p and 0 (not 0¢ p), which are related to X g and
X through Cartesian polar transformations:
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e Then the oscillation probabilities P, 3(d¢cp, 5) are modified as a linear combination
form:
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4 Analysis Strategy

The analysis performs a simultaneous fit of the near detector (ND280) and SK data
using a Bayesian MCMC technique. We use the Bayesian posterior density:

~log P(6]D) =3 [N/(6) = Ni+ Nilog (Ni/N/(6))
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e First term: The data in each ND280 and SK sample are binned and compared.
e Second term: The parameters with Gaussian priors are summed over.

e Last term: A physical constraint is added on X g and X, where A\ determines the
strength of the constraint. During the fit, two constraint cases are considered:

— Weak (A = 0.2), where non-standard PMNS phenomenon is expected to be shown.
— Strong (A = 2), where standard PMNS model is approximated.

— Through comparing the fit results from these two models, we want to see whether
the current T2K data has any preference on each model.

5 Fit results and conclusions
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e The 68% credible intervals of the best-fit values from the strong constraint model
cover the results from T2K official fit [2]. — The strong constraint model 1s indeed
an approximation to the standard PMNS model.
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e In the weak constraint model the best-fit values deviate far from the unitarity circle
X % + X % — 1, but the 90% credible interval still has intersections with that circle,
which means some physical 0~ p values are still included with 90% credible level.
(Figure 3 left)
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Figure 3: The fit results in Xg - X parameter space, with weak (left) and strong (right)
constraint.

e Bi-probability plot and bi-rate plot can be used to further compare two models. In
bi-rate plot the axis 1s the number of events instead of oscillation probability.
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Figure 4: The fit results in bi-probability plot (left) and bi-rate plot (right).

The contours from weak and strong constraint models significantly overlap in both
68% and 90% credible levels. — A good agreement between the two fits from
each model, showing consistency between current T2K data and the standard PMNS
model.
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